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Application of Hypersingular Integral Equation Method to a

Three-Dimensional Crack in Piezoelectric Materials∗

Taiyan QIN∗∗ and Nao-Aki NODA∗∗∗

Using the Green’s functions, the general solutions of a three-dimensional crack prob-
lem in piezoelectric materials under mechanical and electrical loads is derived by boundary
element method. Then this crack problem is reduced to solve a set of hypersingular inte-
gral equations coupled with boundary integral equations. The unknown functions are the
discontinuities of the elastic displacements and electrical potential of the crack surface. The
singularity of the unknowns at the crack front is analyzed by the main-part analysis method
of two-dimensional hypersingular integral equations, and the exact analytical solution of the
singular stresses and electrical displacements near the crack front in a transversely isotropic
piezoelectric solid is given.
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1. Introduction

The piezoelectric materials have coupled effects be-
tween the elastic and the electric fields, and have become
of major interest as the functional materials such as actu-
ators and sensors. It is possible to make a system of intel-
ligent composite materials by combining these piezoelec-
tric materials with structural materials. On the other hand,
both electrical and mechanical disturbances are present in
piezoelectric components, and the strength of the piezo-
electric materials is weakened by the presence of defects
such as voids and cracks. The reliability of these struc-
tures depends on the knowledge of applied mechanical
and electric disturbances. When cracks are present, they
may grow under service load and affect the performance
of structures. Due to the disadvantage of brittleness and
low fracture toughness of piezoelectric materials, a con-
siderable number of research works have been carried out
to investigate the fracture behavior(1) – (14).

Because of mathematical difficulties to treat the cou-
pled electromechanical fields in piezoelectricity, the ma-
jority of the literature concerning crack problems is based
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on two-dimensional assumptions. Comparatively, few
exact solutions are available in the literature for three-
dimensional crack problems in piezoelectric materials. A
solution of a penny-shaped impermeable crack subjected
to axisymmetric tensile loading was derived by Wang(15)

using a proposed general potential function approach. Us-
ing two potential functions, Wang and Huang(16) obtained
the solution for an elliptical crack under uniform trac-
tions and electric disturbance, if the plane of transver-
sal isotropy is parallel to the crack. Chen and Shioya(17)

developed the complete and exact solutions of a penny-
shaped crack in a piezo-electric solid for shear loadings
by a potential theory. Closed-form solutions for other 3D
crack configurations in an infinite piezoelectric body are
yet to be found. Thus, to assess crack-like defects in piezo-
electric materials under combined mechanical and electric
loadings more efficiently, it is necessary to establish ap-
propriate numerical tools. There are two important numer-
ical methods. One is the finite element method (FEM), and
another is the boundary element method (BEM). Kuna
and Shang(8), (9) have analyzed penny-shaped and ellipti-
cal cracks subjected to combined mechanical tension and
electric fields by FEM, and presented some numerical
results of the stress-intensity factors and energy release
rates. BEM is a powerful tool for the solution of field
problems of mathematical physics, since it offers some
inherent advantages over FEM, like the discretization of
the boundary only and an improved accuracy in flux cal-
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culations. Many publications have already been devoted
to the development of fundamental solutions and BEM
for piezoelectricity(1), (18), (19), but only a very limited num-
ber of them deals with three-dimensional analyses, due
to the problems involved resulting from the anisotropy of
piezoelectric materials. A 3D Green’s function for static
piezoelectricity and its derivatives have been presented
by Deeg(1) for piezoelectrics of general anisotropy. Dy-
namic piezoelectric Green’s functions have been presented
by Norris(6) in the frequency domain and by Khutoryan-
sky and Sosa(20), (21) in the time domain. For the partic-
ular case of transversely isotropic piezoelectricity, Dunn
and Wienecke(22) for piezoelectrostatics, and Daros and
Antes(23) for transient analysis developed simplified ex-
pressions for the Green’s functions. BEM for static piezo-
electricity with corresponding numerical results for 3D
analysis has been presented in 1995 by Chen and Lin(24),
and in 1998 by Hill and Farris(11).

The hypersingular integral equation based on the
body force method is a good analytic and numerical
method in fracture mechanics, and has been widely used
for fracture mechanics(25) – (27). In this paper, the Green’s
functions are used to derive the general solutions of
a three-dimensional crack in piezoelectric materials un-
der mechanical and electrical loads by boundary element
method. The crack problem is reduced to solve a set of hy-
persingular integral equations coupled with boundary in-
tegral equations. The singularities of the elastic displace-
ments and electrical potential near the crack front are an-
alyzed by the main-part analysis method, and the exact
analytical solution of the singular stresses and electrical
fluxes are given.

2. Basic of Piezoelectricity

The linear governing equations and constitutive rela-
tions for a piezoelectric material in static equilibrium can
be expressed as two separate equations, one representing
conservation of momentum and the other conservation of
electric charge(1) – (5). To use these two equations in con-
junction with the developed boundary integral equation
method, they are combined into one. In these equations,
lowercase indices i can have values of 1, 2, or 3, and up-
percase indices I can take on values of 1, 2, 3, and 4. The
modified governing equation for the piezoelectric material
in static equilibrium can be written as(1)

ΣiJ,i+bJ =0 (1)

where ΣiJ is the stress-electric displacement matrix, de-
fined as

ΣiJ =


σi j for J= j=1,2,3

Di for J=4
(2)

and bJ is the body load (force and charge) column vector.
A subscript comma denotes the partial differentiation. The
combined constitutive equation is written as

ΣiJ =EiJKlZKl (3)

where EiJKl is the electroelastic constant matrix

EiJKl=



ci jkl for J,K =1,2,3

eli j for J=1,2,3, K =4

eikl for J=4 K =1,2,3,

−ail for J=4 K =4

(4)

and the strain-electric field matrix ZKl takes the form

ZKl=


εkl for K = k=1,2,3

φ,l for K =4
(5)

In addition, UK is the elastic displacement-electric
potential matrix

UK =


uk for K = k=1,2,3

φ for K =4
(6)

where uk and φ are the elastic displacement and electric
potential, respectively.

3. Boundary Integral Equations for a Crack in Gen-
eral Piezoelectric Materials

3. 1 Boundary condition of a crack surface
The mechanical boundary condition of cracks in

piezoelectric materials is always defined by stress-free
crack surfaces. Several electric boundary conditions were
proposed in literature. Among these electric boundary
conditions, two different conditions are applied widely.
Those are permeable and impermeable conditions. For the
first one, the normal electric displacement and electric po-
tential should be continuous across the crack surface

D+3 =D−3 φ+ =φ− (7)

where the superscripts + and − denote the upper and lower
crack surfaces, respectively. This aspect has been sup-
ported by McMeeking(12), and Dunn(22). Pak(2), and Suo,
et al.(4) proposed impermeable conditions on the crack
faces

D+3 =D−3 =0 (8)

This paper presents an analysis for the crack prob-
lems in piezoelectric materials based on boundary condi-
tion (8).

3. 2 General solutions for a crack in a three-
dimensional piezoelectric solid

Consider a flat crack S in a finite three-dimensional
piezoelectric solid. A fixed rectangular Cartesian system
xi (i = 1,2,3) is used. The crack is assumed to be in the
x1x2 plane, and normal to the x3 axis. Using the piezo-
electric form of the Somigliana identity, the elastic dis-
placements and the electric potential at an interior point p
are expressed as(11)

UI(p)= −
∫
Γ

TIJ(p,Q)UJ(Q)ds(Q)
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+

∫
Γ

UIJ(p,Q)TJ(Q)ds(Q)

−
∫

S ++S −
TIJ(p,Q)UJ(Q)ds(Q)

+

∫
S ++S −

UIJ(p,Q)TJ(Q)ds(Q)

+

∫
Ω

UIJ(p,Q)bJ(Q)dΩ(Q) I, J=1,2,3,4

(9)

whereΩ is the domain occupied by the piezoelectric solid,
Γ is the external boundary, TJ are the elastic tractions and
normal charge flux densities on the boundary, UIJ and TIJ

are the fundamental solutions of the piezoelectric material
and related Green’s function as follows(11)

UIJ(ξ− x)=GIJ(ξ− x) (10)

TIJ(ξ− x)=EkJMn
∂GIM(ξ− x)

∂ξn
(11)

TJ =


t j =σ jlnl for J= j=1,2,3

q=Dlnl for J=4
(12)

Note that the elastic displacement and electric poten-
tial discontinuities are written as

ŨJ =


ũ j =u+j −u−j for J= j=1,2,3

φ̃=φ+−φ− for J=4
(13)

Using the relations TIJ(p,Q+) = −TIJ(p,Q−) = T+IJ(p,Q)
and UIJ(p,Q+)=UIJ(p,Q−), the elastic displacements and
the electric potential (9) can be rewritten as

UI(p)= −
∫
Γ

TIJ(p,Q)UJ(Q)ds(Q)

+

∫
Γ

UIJ(p,Q)TJ(Q)ds(Q)

−
∫

S +
T+IJ(p,Q)ŨJ(Q)ds(Q)

+

∫
Ω

UIJ(p,Q)bJ(Q)dΩ(Q)

I, J=1,2,3,4 (14)

Using solution (14) and constitutive Eq. (3), the corre-
sponding stress and electric displacements are expressed
as

ΣiJ(p)= −
∫
Γ

S KiJ(p,Q)UK(Q)ds(Q)

+

∫
Γ

DKiJ(p,Q)TK(Q)ds(Q)

−
∫

S +
S +KiJ(p,Q)ŨK(Q)ds(Q)

+

∫
Ω

DKiJ(p,Q)bK(Q)dΩ(Q) (15)

where the integral kernels are as follows

S KiJ(p,Q)=EiJMn
∂TMK(p,Q)

∂xn
=−EiJMn

∂TMK(p,Q)
∂ξn

(16)

DKiJ(p,Q)=EiJMn
∂UMK(p,Q)

∂xn
=−EiJMn

∂UMK(p,Q)
∂ξn

(17)

3. 3 Boundary integral equations
For a finite piezoelectric solid with an embedded flat

crack, there are two parts of boundary. One is the external
boundary Γ, and another is the crack surface S ±. Using the
boundary conditions, the boundary integral equation and
hypersingular integral equations can be obtained. Let the
source point p be taken to the boundary Γ and represented
by P, the boundary integral equation can be derived from
Eq. (14) as follows

CIJUJ(P)+
∫
Γ

TIJ(P,Q)UJ(Q)ds(Q)

+

∫
S +

T+IJ(P,Q)ŨJ(Q)ds(Q)

=

∫
Γ

UIJ(P,Q)TJ(Q)ds(Q)

+

∫
Ω

UIJ(P,Q)bJ(Q)dΩ(Q) P∈Γ (18)

where CIJ is the constant related to the boundary point P,
which is not evaluated directly.

Using the elastic and electric boundary conditions of
the crack surface, the hypersingular integral equations can
be obtained as

=

∫
S +

S +KiJ(P,Q)ŨK(Q)ds(Q)

+

∫
Γ

S KiJ(P,Q)UK(Q)ds(Q)

=

∫
Γ

DKiJ(P,Q)TK(Q)ds(Q)

+

∫
Ω

DKiJ(P,Q)bK(Q)dΩ(Q) P∈S + (19)

where =
∫

means that the integral must be interpreted as a
finite-part integral. The first integral in Eq. (19) has the
order r−3, and is a hypersingular one. Solving Eqs. (18)
and (19), all the unknowns can be obtained.

4. A Crack in an Infinite Transversely Isotropic
Piezoelectric Solid

Consider a flat crack embedded in an infinite trans-
versely isotropic piezoelectric solid. Suppose that the
crack surface is parallel to the symmetric plane (e.g. x1x2

plane), and there are no body forces and charge. For the
transversely isotropic piezoelectric material, the electro-
elastic constants can be written as follows

ci jkl = c12δi jδkl+c66(δikδ jl+δilδ jk)

+ (c13−c12)(δi jδ3kδ3l+δ3iδ3 jδkl)
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+ (c44−c66)(δ jkδ3iδ3l+δikδ3 jδ3l+δilδ3 jδ3k

+δ jlδ3iδ3k)+ (c11+c33−2c13−4c44)δ3iδ3 jδ3kδ3l

(20)

eli j = e31δi jδ3l+e15(δilδ3 j+δ jlδ3i)

+ (e33−c31−2e15)δ3iδ3 jδ3l (21)

ail =a11δil+ (a33−a11)δ3iδ3l (22)

here c66 = (c11−c12)/2.
4. 1 Green’s solution

For transversely isotropic piezoelectric, Green’s func-
tion can be written as an explicit expression. Here we use
the solutions given by Dunn and Wienecke(22) by a poten-
tial method. The governing equations are expressed as



u1=

(c13e15−c44e31)
∂2

∂x1∂x3

 ∂
2

∂x2
1

+
∂2

∂x2
2

+ [(c44+c13)e33−c33(e15+e31)]
∂4

∂x1∂x3
3

g−
∂ψ

∂x2

u2=

(c13e15−c44e31)
∂2

∂x2∂x3

 ∂
2

∂x2
1

+
∂2

∂x2
2

+ [(c44+c13)e33−c33(e15+e31)]
∂4

∂x2∂x3
3

g+
∂ψ

∂x1

u3=

−c11e15

 ∂
2

∂x2
1

+
∂2

∂x2
2


2

−c44e33
∂4

∂x4
3

+ [c13(e15+e31)+c44e31−c11e33]
∂2

∂x2
3

 ∂
2

∂x2
1

+
∂2

∂x2
2


g

φ=

c44c11

 ∂
2

∂x2
1

+
∂2

∂x2
2


2

+c44c33
∂4

∂x4
3

+ (c11c33−2c44c13−c2
13)

∂2

∂x2
3

 ∂
2

∂x2
1

+
∂2

∂x2
2


g

(23)

where the potentials g and ψ must satisfy following equations: ∂
2

∂x2
1

+
∂2

∂x2
2

+
1

ν2
1

∂2

∂x2
3


 ∂

2

∂x2
1

+
∂2

∂x2
2

+
1

ν2
2

∂2

∂x2
3


 ∂

2

∂x2
1

+
∂2

∂x2
2

+
1

ν2
3

∂2

∂x2
3

g=0 (24)

 ∂
2

∂x2
1

+
∂2

∂x2
2

+
1

ν2
0

∂2

∂x2
3

ψ=0 (25)

here ν0 =
√

c66/c44, and −1/ν2
1, −1/ν2

2, −1/ν2
3 are the roots of the following cubic equation

s3+
a
d

s2+
b
d

s+
c
d
=0 (26)

where 

a= c11(a11c33+2e15e33)−a11c13(c13+2c44)+c44(a33c11+e2
31)−2e15c13(e31+e15)

b= c33[a11c44+a33c11+e31(e31+e15)]−c13a33(c13+2c44)+ (e15+e31)(c33e15−2c13e33)

+e33(c11e33−2c44e31)

c= c44(a33c33+e2
33)

d= c11(a11c44+e2
15)

(27)

If the above Eqs. (24) and (25) are solved for a point charge or force, the Green’s functions can be obtained from the
solutions ui and φ.

4. 1. 1 Point force charge For a unit point charge at point ξ(ξ1,ξ2,ξ3), the elastic displacements and electric
potential at point x(x1, x2, x3) can be expressed as

u1=
3∑

i=1
Aiλ

u
i

x1−ξ1

RiR∗i

u2=
3∑

i=1
Aiλ

u
i

x2−ξ2

RiR∗i

u3=
3∑

i=1
Aiλ

w
i

1
Ri

φ=
3∑

i=1
Aiλ

φ
i

1
Ri

(28)

where
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

Ri =

√
(x1−ξ1)2+ (x2−ξ2)2+z2

i

R∗i =Ri+zi

zi= νi(x3−ξ3)

i=0,1,2,3 (29)



λu
i = [(c13+c44)e33−c33(e15+e31)]ν3

i

+ (c44e31−c13e15)νi

λwi =−c44e33ν
4
i − [e31(c13+c44)−e33c11

+e15c13]ν2
i −c11e15

λ
φ
i = c33c44ν

4
i + [c13(c13+2c44)−c11c33]ν2

i +c44c11

(30)

and Ai is determined by following equations

3∑
i=1

Aiλ
u
i =0

3∑
i=1

Ai
na

i

ν2
i −1

=0

3∑
i=1

Ai
ne

i

ν2
i −1

=
1

2π

(31)

here

na
i =2[λu

i (c13+c44ν
2
i )+νiλ

w
i (c44−c33)

+νiλ
φ
i (e15−e33)]

ne
i =2[−λu

i (e31+e15ν
2
i )+νiλ

w
i (e33−e15)

+νiλ
φ
i (a11−a33)]

(32)

4. 1. 2 Point force in x3-direction For a unit
point force in x1-direction at point ξ(ξ1,ξ2,ξ3), the elastic
displacements and electric potential at point x(x1, x2, x3) is
expressed as

u1=
3∑

i=1
Biλ

u
i

x1−ξ1

RiR∗i

u2=
3∑

i=1
Biλ

u
i

x2−ξ2

RiR∗i

u3=
3∑

i=1
Biλ

w
i

1
Ri

φ=
3∑

i=1
Biλ

φ
i

1
Ri

(33)

where Bi satisfies following equations

3∑
i=1

Biλ
u
i =0

3∑
i=1

Bi
na

i

ν2
i −1

=
1

2π
3∑

i=1
Bi

ne
i

ν2
i −1

=0

(34)

4. 1. 3 Point force in x1-direction For a unit
point force in x1-direction at point ξ(ξ1,ξ2,ξ3), the elastic
displacements and electric potential at point x(x1, x2, x3) is
expressed as

u1 =D0

 1
R0
− (x2−ξ2)2

R0R∗20

−
3∑

i=1
Diλ

u
i

 1
R∗i
− (x1−ξ1)2

RiR∗
2

i


u2 = (x1−ξ1)(x2−ξ2)

D0
1

R0R∗20

+
3∑

i=1
Diλ

u
i

1

RiR∗
2

i


u3 =

3∑
i=1

Diλ
w
i

(x1−ξ1)
RiR∗i

φ=
3∑

i=1
Diλ

φ
i

(x1−ξ1)
RiR∗i

(35)

where Di satisfies

D0ν0+
3∑

i=1
Diνiλ

u
i =0

3∑
i=1

Diλ
w
i =0

3∑
i=1

Diλ
φ
i =0

D0ν0c44+
3∑

i=1
Di

nt
i

ν2
i −1

=
1

2π

(36)

here

nt
i = νiλ

u
i (c44−c11)+λwi (c44+c13ν

2
i )+λφi (e15+e31ν

2
i )

(37)

4. 2 Hypersingular integral equations
For the transversely isotropic piezoelectric solid embedded a flat crack in the symmetric plane, the hypersingular

integral Eq. (19) can be reduced to,

=

∫
S +

1
r3

[c2
44D0ν

2
0(2δαβ−3r,αr,β)+k11(δαβ−3r,αr,β)]ũβ(Q)ds(Q)=−pα(P) α,β=1,2; P∈S + (38)

=

∫
S +

k33

r3
ũ3(Q)ds(Q)+=

∫
S +

k34

r3
φ̃(Q)ds(Q)=−p3(P) P∈S + (39)

=

∫
S +

k43

r3
ũ3(Q)ds(Q)+=

∫
S +

k44

r3
φ̃(Q)ds(Q)=−q0(P) P∈S + (40)

where pi(P) and q0(P) represent the mechanical and electrical loads on the crack surface due to internal or external loads,
and they can obtained from the solution for the loads of the uncracked solid, and kIJ is determined as
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

k11=
3∑

i=1
[c44(Ai+Diνi)+e15Bi]

× [c44(νiλ
u
i +λ

w
i )+e15λ

φ
i ]

k33=
3∑

i=1
(c33Aiνi+e33Biνi−c13Di)

× (−c13λ
u
i +c33νiλ

w
i +e33νiλ

φ
i )

k34=
3∑

i=1
(e33Aiνi−a33Biνi−e31Di)

× (−c13λ
u
i +c33νiλ

w
i +e33νiλ

φ
i )

k43=
3∑

i=1
(c33Aiνi+e33Biνi−c13Di)

× (−e31λ
u
i +e33νiλ

w
i −a33νiλ

φ
i )

k44=
3∑

i=1
(e33Aiνi−a33Biνi−e31Di)

× (−e31λ
u
i +e33νiλ

w
i −a33νiλ

φ
i )

(41)

4. 3 Singularity and singular stress and electric dis-
placement field near the crack front

In order to investigate the singularity of the crack
front, consider a local coordinate system defined as
x1 x2 x3. The x1-axis is the tangent line of the crack front
at point Q0, x2-axis is the internal normal line in the rack
plane, and x3 is the normal of the crack. Then the displace-
ment and electric potential discontinuities of the crack sur-
face near a crack front point Q0 can be assumed as

ũk(Q)=gk(Q0)ξλk
2 φ̃(Q)=Φ(Q0)ξλ4

2 0<Re(λk)<1

(42)

where gk(Q0) and Φ(Q0) are non-zero constants related
to point Q0, λK is the singular index at the crack front.
Consider a small semi-circle domain S ε on the crack sur-
face including point Q0 using the main-part analytical
method(26), (27), the following relations can be derived

=

∫
S ε

ũ1

r3
dξ1dξ2 �−2πλ1g1(Q0)xλ1−1

2 cot(λ1π) (43)

=

∫
S ε

(x1−ξ1)2

r5
ũ1dξ1dξ2�−2

3
πλ1g1(Q0)xλ1−1

2 cot(λ1π)

(44)

=

∫
S ε

(x2−ξ2)2

r5
ũ2dξ1dξ2�−4

3
πλ2g2(Q0)xλ2−1

2 cot(λ2π)

(45)

Fig. 1 A small semi-circle domain S ε on the crack surface

=

∫
S ε

(x1−ξ1)(x2−ξ2)
r5

ũ1dξ1dξ2�0 (46)

=

∫
S ε

ũ3

r3
dξ1dξ2�−2πλ3g3(Q0)xλ3−1

2 cot(λ3π) (47)

=

∫
S ε

φ̃

r3
dξ1dξ2 �−2πλ4Φ(Q0)xλ4−1

2 cot(λ4π) (48)

Using above relations, from Eqs. (38)–(40), it can be
shown that

cot(λ1π)=0 cot(λ2π)=0 cot(λ3π)=0 cot(λ4π)=0

(49)

Then the singular indexes is obtained as

λ1 =λ2=λ3=λ4=λ=
1
2

(50)

It is shown that the singularities near the crack front
in a piezoelectric solid are the same as that in a general ho-
mogenous material. The mechanical stress intensity fac-
tors corresponding to the crack modes I, II and III as well
as the “electric field intensity factor” KIV are defined as

KI = lim
r→0

σ33(r,θ)|θ=0

√
2r KII = lim

r→0
σ32(r,θ)|θ=0

√
2r

KIII = lim
r→0

σ31(r,θ)|θ=0

√
2r KIV = lim

r→0
D3(r,θ)|θ=0

√
2r

(51)

where r is the distance from point p to the crack front point
Q0 as shown in Fig. 1. Considering relation Eq. (42), for a
point p near the crack front, the following relations can be
obtained by using the main-part analytical method.∫

S ε

1

R3
0

1− 3(x1−ξ1)2

R2
0

 ũ1dξ1dξ2�0 (52)

∫
S ε

1

R3
0

1− 3(x2−ξ2)2

R2
0

 ũ1dξ1dξ2

�
πg1(Q0)√

r

1√
r0

cos
θ0

2
(53)

∫
S ε

1

R3
0

1− 3ν2
0x2

3

R2
0

 ũ1dξ1dξ2�
πg1(Q0)√

r

1√
r0

cos
θ0

2

(54)∫
S ε

1

R3
j

1− 3(x2−ξ2)2

R2
j

 ũ3dξ1dξ2

�
πg3(Q0)√

r

1√
r j

cos
θ j

2
j=1,2,3 (55)

∫
S ε

1

R3
j

1−
3ν2

j x
2
3

R2
j

 ũidξ1dξ2 �
πgi(Q0)√

r

1√
r j

cos
θ j

2

(56)∫
S ε

3ν j x3(x2−ξ2)

R5
j

ũ3dξ1dξ2 �−πg3(Q0)√
r

1√
r j

sin
θ j

2

(57)

where r0 =

√
cos2 θ+ν2

0 sin2 θ, θ0 = tg−1(ν0tgθ), r jeiθ j =

cosθ+ iν j sinθ, and i is the imaginary unit
√−1. Using
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relations Eqs. (52) – (57), the singular stresses and electric
displacement around the crack front can be expressed as
follows

σ13= c2
44D0ν

2
0
πg1(Q0)√

r

1√
r0

cos
θ0

2
(58)

σ23=−πg2(Q0)√
r

3∑
i=1

Au
i γ

u
i

1√
ri

cos
θi

2

+
π√
r

3∑
i=1

[g3(Q0)Aw
i +Φ(Q0)Aφ

i ]γu
i

1√
ri

sin
θi

2
(59)

σ33=−πg2(Q0)√
r

3∑
i=1

Au
i γ

w
i

1√
ri

sin
θi

2

− π√
r

3∑
i=1

[g3(Q0)Aw
i +Φ(Q0)Aφ

i ]γwi
1√
ri

cos
θi

2
(60)

D3=−πg2(Q0)√
r

3∑
i=1

Au
i γ

φ
i

1√
ri

sin
θi

2

− π√
r

3∑
i=1

[g3(Q0)Aw
i +Φ(Q0)Aφ

i ]γφi
1√
ri

cos
θi

2
(61)

here

Au
i = c44(Ai+Diνi)+e15Bi

Aw
i = c33Aiνi+e33Biνi−c13Di

Aφ
i = e33Aiνi−a33Biνi−e31Di

(62)



γu
i = c44(νiλ

u
i +λ

w
i )+e15λ

φ
i

γwi = c13λ
u
i −c33νiλ

w
i −e33νiλ

φ
i

γ
φ
i = e31λ

u
i −e33νiλ

w
i +a33νiλ

φ
i

(63)

Using relations Eq. (51), the above singular stresses
and electric displacement can be rewritten as

σ13=
KIII√

2r

1√
r0

cos
θ0

2
(64)

σ23=
KI√
2r

f21(θ)+
KII√

2r
f22(θ)+

KIV√
2r

f24(θ) (65)

σ33=
KI√
2r

f31(θ)+
KII√

2r
f32(θ)+

KIV√
2r

f34(θ) (66)

D3=
KI√
2r

f41(θ)+
KII√

2r
f42(θ)+

KIV√
2r

f44(θ) (67)

where

f21(θ)=− 1
(k33k44−k34k43)

3∑
i=1

(k44Aw
i −k43Aφ

i )γu
i

1√
ri

sin
θi

2

(68)

f22(θ)=
1

k11

3∑
i=1

Au
i γ

u
i

1√
ri

cos
θi

2
(69)

f24(θ)=
1

(k33k44−k34k43)

3∑
i=1

(k33Aw
i −k34Aφ

i )γu
i

1√
ri

sin
θi

2

(70)

f31(θ)=
1

(k33k44−k34k43)

3∑
i=1

(k44Aw
i −k43Aφ

i )γwi
1√
ri

cos
θi

2

(71)

f32(θ)=
1

k11

3∑
i=1

Au
i γλ

w
i

1√
ri

sin
θi

2
(72)

f34(θ)=− 1
(k33k44−k34k43)

3∑
i=1

(k34Aw
i −k33Aφ

i )γwi
1√
ri

cos
θi

2

(73)

f41(θ)=
1

(k33k44−k34k43)

3∑
i=1

(k44Aw
i −k43Aφ

i )γφi
1√
ri

cos
θi

2

(74)

f42(θ)=
1

k11

3∑
i=1

Au
i γ

φ
i

1√
ri

sin
θi

2
(75)

f44(θ)=− 1
(k33k44−k34k43)

3∑
i=1

(k34Aw
i −k33Aφ

i )γφi
1√
ri

cos
θi

2

(76)

Other singular stresses and electric displacements
near point Q0 can also be obtained by use of above
method. It is shown that, for the transversely isotropic
piezoelectric materials, the crack mode I is not indepen-
dent. That is, the mechanical stress intensity factor KI is
coupled with the “electric field intensity factor” KIV.

5. Conclusion

A set of hypersingular integral equations coupled
with general boundary integral equations for an imperme-
able crack in a three-dimensional piezoelectric solid sub-
jected to mechanical and electrical loads is derived by a
boundary element method. The unknowns are the discon-
tinuities of the elastic displacements and electrical poten-
tial of the crack surface. The behaviors of the unknowns
near the crack front are analyzed by the main-part analyt-
ical method of hypersingular singular integral equations,
and the singular orders are given. It is shown that the
singularities of the elastic stresses and electric displace-
ment near the crack front in a piezoelectric solid are sim-
ilar as that in a general homogenous material. Moreover,
the singular stresses and electrical displacements near the
crack front in a transversely isotropic piezoelectric solid
can be obtained by main-part analytical method of two-
dimensional hypersingular integral equations.

For an infinite transversely isotropic piezoelectric
solid, it is shown that the crack mode II is coupled with
mode III, and the crack mode I is also not independent.
That is, the mechanical stress intensity factor KI is cou-
pled with the “electric field intensity factor” KIV.
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